Spatial self-phase modulation in WS2 and MoS2 atomic layers
نویسندگان
چکیده
منابع مشابه
Towards large area and continuous MoS2 atomic layers via vapor-phase growth: thermal vapor sulfurization.
We report on the effects of substrate, starting material, and temperature on the growth of MoS(2) atomic layers by thermal vapor sulfurization in a tube-furnace system. With Mo as the starting material, atomic layers of MoS(2) flakes are obtained on sapphire substrates while a bell-shaped MoS(2) layer, sandwiched by amorphous SiO(2), is obtained on native-SiO(2)/Si substrates under the same sul...
متن کاملNanoplatelets made from MoS2 and WS2
Free clusters of the layered semiconductor materials of type MS2 (M =Mo, W) are studied using mass and photoelectron spectroscopy and compared to theoretical predictions. In contrast to carbon fullerenes, these clusters prefer planar platelet structures. The dangling bonds at the edges are stabilized by excess S atoms. For WnS m we find that platelet structures dominate for clusters larger than...
متن کاملPhonons in single-layer and few-layer MoS2 and WS2
We report ab initio calculations of the phonon dispersion relations of the single-layer and bulk dichalcogenides MoS2 and WS2. We explore in detail the behavior of the Raman-active modes A1g and E1 2g as a function of the number of layers. In agreement with recent Raman spectroscopy measurements [C. Lee et al., ACS Nano 4, 2695 (2010)], we find that the A1g mode increases in frequency with an i...
متن کاملElectromechanics in MoS2 and WS2: nanotubes vs. monolayers
The transition-metal dichalcogenides (TMD) MoS₂ and WS₂ show remarkable electromechanical properties. Strain modifies the direct band gap into an indirect one, and substantial strain even induces an semiconductor-metal transition. Providing strain through mechanical contacts is difficult for TMD monolayers, but state-of-the-art for TMD nanotubes. We show using density-functional theory that sim...
متن کاملVertical and in-plane heterostructures from WS2/MoS2 monolayers.
Layer-by-layer stacking or lateral interfacing of atomic monolayers has opened up unprecedented opportunities to engineer two-dimensional heteromaterials. Fabrication of such artificial heterostructures with atomically clean and sharp interfaces, however, is challenging. Here, we report a one-step growth strategy for the creation of high-quality vertically stacked as well as in-plane interconne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optical Materials Express
سال: 2020
ISSN: 2159-3930
DOI: 10.1364/ome.380103